The Second Eigenvalue of the p-Laplacian as p Goes to 1
نویسندگان
چکیده
Received 15 July 2009; Accepted 29 September 2009 Academic Editor: Norimichi Hirano Copyright q 2010 Enea Parini. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The asymptotic behaviour of the second eigenvalue of the p-Laplacian operator as p goes to 1 is investigated. The limit setting depends only on the geometry of the domain. In the particular case of a planar disc, it is possible to show that the second eigenfunctions are nonradial if p is close enough to 1.
منابع مشابه
Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملNodal Domains for the p-Laplacian
In this paper we consider the eigenvalue problem − pu = λ(m)|u|p−2u, u ∈ W 1,p 0 ( ) where p > 1, p is the p-Laplacian operator, λ > 0, is a bounded domain in R(N ≥ 1) and m is a given positive function in L( ) (r depending on p and N ). We prove that the second positive eigenvalue admits exactly two nodal domains. AMS subject classification: 35J20, 35J70, 35P05, 35P30.
متن کاملEIGENVALUE PROBLEMS WITH p-LAPLACIAN OPERATORS
In this article, we study eigenvalue problems with the p-Laplacian operator: −(|y′|p−2y′)′ = (p− 1)(λρ(x)− q(x))|y|p−2y on (0, πp), where p > 1 and πp ≡ 2π/(p sin(π/p)). We show that if ρ ≡ 1 and q is singlewell with transition point a = πp/2, then the second Neumann eigenvalue is greater than or equal to the first Dirichlet eigenvalue; the equality holds if and only if q is constant. The same ...
متن کاملOn the average value for nonconstant eigenfunctions of the p - Laplacian assuming Neumann boundary data ∗ Stephen
We show that nonconstant eigenfunctions of the p-Laplacian do not necessarily have an average value of 0, as they must when p = 2. This fact has implications for deriving a sharp variational characterization of the second eigenvalue for a general class of nonlinear eigenvalue problems.
متن کاملOn Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009